Infeasibility detection in the alternating direction method of multipliers for convex optimization
نویسندگان
چکیده
The alternating direction method of multipliers (ADMM) is a powerful operator splitting technique for solving structured optimization problems. For convex optimization problems, it is well-known that the iterates generated by ADMM converge to a solution provided that it exists. If a solution does not exist, then the ADMM iterates do not converge. Nevertheless, we show that the ADMM iterates yield conclusive information regarding problem infeasibility for a wide class of convex optimization problems including both quadratic and conic programs. In particular, we show that in the limit the ADMM iterates either satisfy a set of first-order optimality conditions or produce a certificate of either primal or dual infeasibility. Based on these results, we propose termination criteria for detecting primal and dual infeasibility in ADMM.
منابع مشابه
Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملOn the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers
This note shows the O(1/t) convergence rate of Eckstein and Bertsekas’s generalized alternating direction method of multipliers in the context of convex minimization with linear constraints.
متن کاملOn the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions
In this paper, we establish the convergence properties for a majorized alternating direction method of multipliers for linearly constrained convex optimization problems,whose objectives contain coupled functions.Our convergence analysis relies on the generalized Mean-Value Theorem, which plays an important role to properly control the cross terms due to the presence of coupled objective functio...
متن کاملAlternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
Chandrasekaran, Parrilo, and Willsky (2012) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for l...
متن کاملInexact Alternating-Direction-Based Contraction Methods for Separable Linearly Constrained Convex Optimization
Alternating direction method of multipliers has been well studied in the context of linearly constrained convex optimization. In the last few years, we have witnessed a number of novel applications arising from image processing, compressive sensing and statistics, etc., where the approach is surprisingly efficient. In the early applications, the objective function of the linearly constrained co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017